Yunbum Kook (국윤범), Vertex Sparsification for Edge Connectivity

Room B232 IBS (기초과학연구원)

Graph compression or sparsification is a basic information-theoretic and computational question. A major open problem in this research area is whether $(1+\epsilon)$-approximate cut-preserving vertex sparsifiers with size close to the number of terminals exist. As a step towards this goal, we initiate the study of a thresholded version of the problem: for a given parameter $c$,

Tuan Tran, Anti-concentration phenomena

Room B232 IBS (기초과학연구원)

Let $X$ be a real random variable; a typical anti-concentration inequality asserts that (under certain assumptions) if an interval $I$ has small length, then $\mathbb{P}(X\in I)$ is small, regardless the location of $I$. Inequalities of this type have found powerful applications in many branches of mathematics. In this talk we will discuss several recent applications

Gwenaël Joret, Packing and covering balls in graphs excluding a minor

Zoom

In 2007, Chepoi, Estellon, and Vaxès conjectured that there exists a universal constant $c>0$ such that the following holds for every positive integers $r$ and $k$, and every planar graph $G$: Either $G$ contains $k$ vertex-disjoint balls of radius $r$, or there is a subset of vertices of size at most $c k$ meeting all

Sebastian Siebertz, Rank-width meets stability

Zoom

Forbidden graph characterizations provide a convenient way of specifying graph classes, which often exhibit a rich combinatorial and algorithmic theory. A prime example in graph theory are classes of bounded tree-width, which are characterized as those classes that exclude some planar graph as a minor. Similarly, in model theory, classes of structures are characterized by